INSTITUTE OF MATHEMATICS AND APPLICATION

BHUBANESWAR

ENTRANCE TEST FOR ADMISSION INTO B.Sc. (HONOURS) IN MATHEMATICS AND COMPUTING,2024-2025

Maximum Marks:100

Time: 2 hours

INSTRUCTION TO CANDIDATES

- Ensure that this Test Booklet contains 08 printed pages with multiple choice questions.
- Candidates are required to check that the Test Booklet does not have any discrepancy(ies) link unprinted or torn or missing pages, missing questions etc. If so, get it replaced by a complete test booklet before attempting to answer. No extra time will given, if replaced afterwords.
- Each of the questions/incomplete statements is followed by four options/choices marked as (a),(b),(c),(d) under each question/statement,of which only one of them is correct/most appropriate.
- For each question, mark the correct/most appropriate option/choice by putting a cross (×) mark in the appropriate box of the answer sheet provided to you. In case, a candidate feels that there is multiple correct options/choices, the candidate has to mark the option/choice which he/she feels is the most appropriate/best. In any case,only one option/choice has to be marked for each question.More than one option/choice marked in the answer sheet against a question number will be deemed as incorrect.
- If you mark your option/choice at any place other than the box provided, it will not be evaluated.
- Each correct answer carries 2 marks.
- Use of any written/ printed material, calculator, docu-pen, any communication devices like cell phones/ipads etc, inside the examination hall is not allowed. Candidates found with such items will be reported and his/her candidature will be summarily cancelled.
- Blank sheet(s) for doing rough work/calculations is/are appended at the end of the Test Booklet.

Warning: Any malpractice or any attempt to commit any kind of malpractice in the examination hall will disqualify the candidate.

MULTIPLE - CHOICE QUESTIONS

Throught this booklet, \mathbb{R} stands for the set of real numbers and z stands for complex numbers

- 1. If R is a relation defined on a set $A = \{a, b, c\}$ then relation $R = \phi$ is
 - (a) equivalence relation(b) symmetric, transitive but not reflexive(c) symmetric but neither reflexive nor transitive(d) none of these.
- 2. If $f(x) = \max(x, 1/x)$ for x > 0 where $\max(a, b)$ denotes the greater of the two real number a and b then for 0 < k < 1 the value of f(k)f(1/k) is
 - (a) 1/k (b) k (c) $1/k^2$ (d) $1/k^3$.
- 3. The fundamental period of $f(x) = \sin^4 x + \cos^4 x$ is
 - (a) π (b) $3\pi/4$ (c) $\pi/4$ (d) $\pi/2$.
- 4. If y is a function of x defined by $3^{x+y} = 3^x + 3^y$ then the domain of y(x) is
 - (a) $(1,\infty)$ (b) $(3,\infty)$ (c) $(0,\infty)$ (d) $(-1,\infty)$.

5. Let f and g be the functions defined by $f(x) = \frac{x}{x+1}$ and $g(x) = \frac{x}{1-x}$. Then $(f \circ g)^{-1}(x)$ is

- (a) $\frac{1}{x}$ (b) x (c) $\frac{1}{x+1}$ (d) x+1.
- 6. If $f(x+2) = \frac{1}{2} \{ f(x+1) + \frac{4}{f(x)} \}$ and f(x) > 0 for all $x \in \mathbb{R}$ then $\lim_{x \to \infty} f(x)$ is
 - (a) 1 (b) 3 (c) -2 (d) 2.
- 7. If $f(x) = \sum_{k=1}^{n} (x \frac{1}{k})(x \frac{1}{k+1})$ then $\lim_{n \to \infty} f(0)$ is (a) 0 (b) -1 (c) 1 (d) 2.
- 8. If the graph of the function y = f(x) is symmetric about the line x = 2 then
 - (a) f(x+2) = f(x-2) (b) f(x) = f(-x)(c) f(2+x) = f(2-x) (d) f(x+1) = f(1-x).

9. If $f(x) = 27x^3 + \frac{1}{x^3}$ and α, β are the roots of $3x + \frac{1}{x} = 2$ then

(a)
$$f(\alpha) = 10$$
 (b) $f(\beta) = 12$ (c) $f(\alpha) = f(\beta) = -10$ (d) $f(\alpha) \neq f(\beta)$

10. If $5f(x) + 3f(\frac{1}{x}) = x + 2$ and y = xf(x) then $(\frac{dy}{dx})_{x=1}$ is equal to

- (a) 8/7 (b) 1 (c) 7/8 (d) 1/7,
- 11. The number of divisors of 1029, 1547 and 122 are in
 - (a) AP (b) GP (c) HP (d) none of these.
- 12. If for all x, y the function f defined by $f(x) + f(y) + f(x) \cdot f(y) = 1$ and f(x) > 0 then
 - (a) f'(x) does not exists (b) f'(x) = 0 for all x(c) f'(0) < f'(1)(d) none of these.
- 13. If $\lim_{x \to \infty} (1 + \frac{\alpha}{x} + \frac{\beta}{x^2}) = e^2$ then (a) $\alpha = 1, \beta = 2$ (b) $\alpha = 2, \beta = 1$
 - (c) $\alpha = 1, \beta$ is any real constant (d) $\alpha = -1, \beta = 1.$
- 14. Let $f(x) = \int_{0}^{x} t \sin \frac{1}{t} dt$. Then the number of points of discontinuity of function f(x) in the open interval $(0, \pi)$ is
 - (a) 0 (b) 1 (c) 2 (d) infinite.
- 15. The equation of the tangent to the curve $y = e^{-|x|}$ at the point where the curve cuts the line x = 1 is

(a)
$$x + y = e$$
 (b) $e(x + y) = 1$ (c) $y + ex = 2$ (d) $x + ey = 2$.

- 16. A ballon is pumped at the rate of $a \ cm^3/min$. The rate of increase of its surface area when the radius is $b \ cm$ is
 - (a) $\frac{2a^2}{b^4}cm^2/min$ (b) $\frac{a}{2b}cm^2/min$ (c) $\frac{2a}{b}cm^2/min$ (d) none of these.

17. If x be a number which exceeds its square by the greatest possible quantity then x is equal to

- (a) 1/2 (b) 1/3 (c) 1/4 (d) 1/5.
- 18. Let $g(x) = f(x) {f(x)}^2 + {f(x)}^3$ for all values of x. Then
 - (a) g(x) is increasing when f(x) increasing (b) g(x) increasing when f'(x) < 0
 - (c) g(x) decreasing when f'(x) > 0 (d) none of these.
- 19. If f(x) is a polynomial of degree 4 with f(2) = -1, f'(2) = 0, f''(2) = 2, f'''(2) = -12 and $f^{(iv)}(2) = 24$ then the value of f''(1) is
 - (a) 20 (b) 22 (c) 24 (d) 26.
- 20. If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are continuous functions then the value of the integral $\pi/2$

$$\int_{-\pi/2} (f(x) + f(-x))(g(x) - g(-x))dx$$
 is

(a)
$$\pi$$
 (b) $\pi/2$ (c) 1 (d) 0.

- 21. The value of $\int_{2}^{5} \frac{f(x)}{f(x)+f(7-x)} dx$ is (a) 3/2 (b) 1/2 (c) 5/2 (d) none of these.
- 22. The area enclosed by the curves $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is
 - (a) 1/2 sq unit (b) 1/3 sq unit (c) 4/3 sq unit (d) 5/3 sq unit.

23. If
$$f(2a - x) = f(x)$$
 and $\int_{0}^{a} f(x)dx = k$ then $\int_{0}^{2a} f(x)dx$ is
(a k (b) 2k (c) 3k (d) k/2.

24. Let f(x) be a differentiable function and f(1) = 2. If $\lim_{x \to 1} \int_{2}^{f(x)} \frac{2t}{x-1} dt = 4$ then the value of f'(1) is (a) 1 (b) 2 (c) 3 (d) 4. 25. If $f(1/x) + x^2 f(x) = 0, x > 0$ and $I = \int_{1/x}^x f(t) dt, 1/2 \le x \le 2$, then I is equal to (a) f(2) - f(1/2) (b) 0 (c) f(1/2) - f(2) (d) none of these.

26. Let $f(x) = (sinx)^{\frac{1}{\pi-2x}}$, $x \neq \pi/2$. If f(x) is continuous at $x = \pi/2$ then $f(\pi/2)$ is

(a) e (b) 1 (c) 0 (d) none of these.

27. The values of a for which the equation $sin^4x + cos^4x = a$ has real solution

(a) $2 \le a \le 3$ (b) 1/4 < a < 1/2 (c) $1/2 \le a \le 1$ (d) none of these.

- 28. If $1 < x < \sqrt{2}$, then the number of solution of the equation $tan^{-1}(x-1) + tan^{-1}x + tan^{-1}(x+1) = tan^{-1}3x$ is
 - (a) 1 (b) 2 (c) 3 (d) 0.
- 29. If α, β, γ are the altitudes of a triangle ABC and 2s denotes it perimeter and Δ is its area then $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ is equal to

(a)
$$\frac{\Delta}{s}$$
 (b) $\frac{s}{\Delta}$ (c) $s.\Delta$ (d) none of these.

30. if
$$f(x) = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix}$$
 then $f(x)$ is divisible by

(a) x^2 (b) x^3 (c) x^4 (d) none of these.

31. If $log_{\frac{1}{2}}\frac{|z|^2+2|z|+4}{2|z|^2+1}<0$ then the region traced by z is

(a) |z| > 1 (b) |z| > 3 (c) |z| < 3 (d) |z| > 4.

32. If $z^4 + z^3 + 2z^2 + z + 1 = 0$ then |z| is equal to

(a) 1 (b) 2 (c)
$$1/2$$
 (d) 3.

- 33. If $\overline{z(z+\alpha)} + \overline{z}(z+\alpha) = 0$, where α is a complex constant, then z is represented by a point on
 - (a) circle (b) parabola (c) ellipse (d) hyperbola.
- 34. Let $z = \frac{\cos\theta + i\sin\theta}{\cos\theta i\sin\theta}$, $\pi/4 < \theta < \pi/2$. Then $\arg z$ is
 - (a) $\pi + 2\theta$ (b) $2\theta \pi$ (c) 2θ (d) none of these
- 35. The number of ways in which a mixed double game can be arranged from among 9 married couples if no husband and wife play in the same game is
 - (a) 1020 (b) 1252 (c) 1352 (d) 1552.
- 36. The number of integral solution of x + y + z + t = 29 when $x \ge 1, y \ge 2, z \ge 3$ and $t \ge 0$ is
 - (a) 2500 (b) 2600 (c) 2700 (d) 2800.
- 37. The number of integers between 1 and 1000000 have sum of the digits equal to 18 is
 - (a) 25925 (b) 25926 (c) 25927 (d) 25928.
- 38. In a club election the number of contestants is one more than the number of maximum candidates for which a voter can vote. If the total number of ways in which a voter can vote be 62 then the number of candidates is
 - (a) 5 (b) 6 (c) 7 (d) 8.
- 39. If a variable line remains at a constant distance 3p from origin and meets the coordinate axes at A and B then the locus of the centroid of the triangle AOB is

(a)
$$x^{-2} + y^{-2} = p^{-2}$$
 (b) $x^{-2} + y^{-2} = 2p^{-2}$ (c) $x^{-2} + y^{-2} = 3p^{-2}$ (d) $x^{-2} + y^{-2} = 4p^{-2}$.

- 40. If the chord y = mx + 1 of the circle $x^2 + y^2 = 1$ subtends an angle of measure $\pi/4$ at the major segment of the circle then the value of m is
 - (a) 1 (b) 2 (c) 3 (d) none of these.

- 41. The locus of the middle point of a chords of a parabola which subtend a right angle at the vertex of the parabola $y^2 = 4ax$ is
 - (a) a circle (b) an ellipse (c) a parabola (d) a hyperbola.
- 42. The image of a point (1,3,4) with respect to the plane mirror 2x y + z + 3 = 0 is
 - (a) (1,3,2) (b) (-3,5,2) (c) (3,5,-2) (d) (3,-5,2).
- 43. The number of vectors of unit length perpendicular to the vector $\overrightarrow{a} = (1, 1, 0)$ and $\overrightarrow{b} = (0, 1, 1)$ is
 - (a) 1 (b) 2 (c) 3 (d) 4.
- 44. The volume of the tetrahedron whose vertices are given by the vectors $-\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}, \overrightarrow{i} \overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{i} + \overrightarrow{j} \overrightarrow{k}$ with reference to the fourth vertex as origin is
 - (a) 1/3 (b) 2/3 (c) 4/3 (d) 5/3.
- 45. If two dice are thrown then the probability that the sum of the numbers coming up on them is 9 when it is known that number 5 always occurs on the first die is
 - (a) 1/4 (b) 1/5 (c) 1/6 (d) 1/7.
- 46. A five digit number is formed by using the digits 0,1,2,3,4 and 5. The probability that the number is divisible by 6 is
 - (a) 3/50 (b) 7/50 (c) 9/50 (d) 11/50.
- 47. The remainder when 2^{2003} is divisible by 17 is
 - (a) 1 (b) 2 (c) 8 (d) 9.
- 48. The coefficient of x^{10} in the expansion of $(1 + x^2 x^3)^8$ is
 - (a) 475 (b) 476 (c) 575 (d) 576.

49. If
$$f(x) = \begin{vmatrix} 1 & \sin x & 1 - \cos x \\ 1 + \sin x & \cos x & 1 + \sin x - \cos x \\ \sin x & \sin x & 1 \end{vmatrix}$$
 then $\int_{0}^{\pi/2} f(x) dx$ is equal to

(a)
$$1/2$$
 (b) $1/3$ (c) $-1/2$ (d) $-1/3$.

50. The value of
$$\begin{vmatrix} x & x^2 - yz & 1 \\ y & y^2 - zx & 1 \\ z & z^2 - xy & 1 \end{vmatrix}$$
 is
(a) 1 (b) -1 (c) 0 (d) $-xyz$.

***** THE END *****